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Resumo

Neste trabalho, estudamos oscilagdes coletivas de um géds quantico bosonico com interagdes di-
polares em uma armadilha tipo bolha, na qual os dtomos sdo fortemente confinados em uma casca
esférica. Essa geometria apresenta caracteristicas bastante distintas do caso de uma armadilha “cheia”
devido ao aparecimento de uma fronteira interna: em particular, surgem assinaturas especificas em
seus modos de oscilagcdo. Ademais, ao considerarmos intera¢des dipolares, observamos mudancas
caracteristicas no estado fundamental e frequéncias de oscilagdo do sistema. Mostramos aqui como,
com uma técnica perturbativa particularmente simples, conseguimos obter expressdes analiticas de
limites superiores (i.e. desigualdades) para frequéncias de diversos modos de oscilacdo do sistema, as
quais dependem somente de suas caracteristicas no estado de equilibrio. O que ¢ interessante nesse
método € que essas desigualdades sdo frequentemente saturadas, fornecendo valores que correspon-
dem, em excelente aproximacao, as frequéncias de oscilacdo de fato. Nossos resultados recuperam
expressoes conhecidas no caso de uma armadilha cheia [1, 2], e tanto nesse caso quanto para a arma-
dilha tipo bolha sem interacdo dipolar [3], para os quais existem resultados conhecidos, elas fornecem
frequéncias em excelente acordo com valores medidos experimentalmente ou calculadas por métodos

independentes, como equagdes hidrodinamicas.

1 Introducao

H4 mais de 20 anos, o estudo extensivo de gases quanticos ultrafios e, em particular, da condensagao
de Bose-Einstein em tais sistemas tem se mostrado uma area extremamente prolifica, e que permitiu
grande avan¢o no entendimento de uma mirfade de fendmenos, tais como superfluidez, supercondu-
tividade e turbuléncia. Nesse contexto, dtomos dipolares, devido a sua interacdo anisotrpica e de
longo alcance, apresentam uma enorme riqueza de novos fendmenos e comportamentos [4].

Armadilhas tipo bolha recentemente se tornaram possiveis experimentalmente gragas ao uso de
potenciais adiabaticos vestidos de radiofrequéncia [5]. Estas levantaram muito interesse tedrico e
experimental no estudo de tais sistemas em geometrias diversas daquelas exploradas em armadilhas
usuais: em particular a propria geometria de uma bolha, que difere drasticamente de uma esfera cheia
devido ao aparecimento de uma fronteira interna. No entanto, esta ultima € impraticavel de se obter
experimentalmente na superficie da Terra, devido a gravidade, que tende a acumular 4tomos no fundo
da armadilha. Nao obstante, tanto do ponto de vista puramente tedrico (onde € muito facil “desligar”
a gravidade), quanto da realizacdo experimental, com um experimento langado a estacdo espacial

internacional no ultimo ano [6], essa € uma geometria extremamente interessante de ser explorada.



Nesse contexto, uma extensao natural é investigar o comportamento de condensados de Bose-
Einstein sujeitos a interagdes dipolares numa armadilha tipo bolha, e como a a¢do conjunta da geo-
metria e da interacdo influencia suas caracteristicas. Até o momento nio ha resultados na literatura
sobre esse tipo de sistema.

De fato, esse sistema apresenta grandes dificuldades para um tratamento analitico rigoroso. En-
tretanto, ele se mostrou um terreno bastante fértil para estudar e aplicar uma método perturbativo de
amplo escopo, derivado da teoria de resposta linear no formalismo de Kubo [7], recorrendo a Sum
Rules. Além da multiplicidade de aplicac¢des, que incluem gases quanticos ultrafrios [1, 2, 8], esse
método apresenta relativa facilidade técnica.

Neste trabalho, nos propomos a analisar algumas caracteristicas dinamicas de condensados dipo-
lares numa bolha, a saber, as frequéncias e energias de alguns dos seus modos coletivos de oscilagao,
a partir da teoria de resposta linear. Na secdo 2, desenvolvemos as ferramentas necessarias para essa
do problema e mostramos como elas podem ser aplicadas a um sistema genérico, especificados ape-
nas seu hamiltoniano e estado de equilibrio. Na secdo 3, usaremos essas ferramentas para calcular
explicitamente as frequéncias de alguns dos principais modos coletivos de interesse no nosso sistema,
comparando os resultados com os casos limites conhecidos na literatura [1-3], de uma armadilha

cheia ou de uma bolha sem interagdes dipolares.

2 Fundamentos Teoricos

Na presente abordagem para obter frequéncias de oscilacdes coletivas do condensado, precisa-
remos lancar mao de alguns resultados do formalismo de Kubo [7, 8], que desenvolveremos de um
modo bastante geral a seguir. Esses resultados, por sua vez, fornecem expressdes perturbativas para
as frequéncias, que sdo avaliadas no estado de equilibrio do sistema, de modo que esbogaremos como
este foi calculado numa armadilha tipo bolha e quais as suas principais caracteristicas nessa geometria

na presenca de interagdes dipolares.

2.1 Formalismo

Abordaremos os modos coletivos do condensado como uma resposta linear do sistema [7, 9] a uma
perturbacao (potenciais externos dependentes do tempo). Na prética, a perturbacdo considerada para
cada modo estd associada ao tipo de potenciais oscilantes utilizados para excitd-lo experimentalmente.

Para isso, analisaremos o caso mais geral de como um sistema reage a uma perturbacao depen-

dente do tempo (em 1* ordem): em particular, como seus observaveis se desviam do equilibrio e se



correlacionam a perturbacao. Consideremos um hamiltoniano perturbado da forma:
H(t) = Ho + Hy(t) = Ho — Bf(t) ey

Onde B é um operador independente do tempo e f(¢) ¢ uma funcao escalar do tempo. Queremos
que a perturbacdo H; comece a atuar num instante ¢, (ou seja f(t) =0, YVt < to).

H tem o operador de evolugao temporal U associado:

Ult, to) = Up(t, to)Ui(t, to) onde: Up(t, tg) = entlolt=to) 2)

Usando os sobrescritos ©,% I para denotar vetores de estado e operadores nos esquemas de

Schrodinger, Heisenberg e Dirac (ou de interagdo), respectivamente, temos as relagoes:
[ (1)) = Ug(t, to) [¢°()) G'(t) = Ul (t, t0) G5 () Us(t, to)

E convém lembrar que nos equemas de Heisenberg e Dirac, as derivadas temporais de operadores

podem ser escritas como:

H i S H i I S H
0 = 310,670+ (G 0) = 5. ct)"+ () ®
I i SN / s\
S0 = 3l 6]+ (-0) = 4 (1, 0]+ (%-0) @
Definimos o vetor de estado [¢) e o operador de densidade p (em qualquer dos esquemas):
[to0) = [¥5(t0)) = [v™) = [ (t0)) (5)
p(t) = Zpk |t (8)) (Ve (D) (6)

Onde p;, sdo probabilidades associadas a uma mistura estatistica de estados'. p é extremamente
util para calcular valores médios de operadores, que podem ser escritos da forma (G(t)) = Tr{p(t)G(t)}.
No esquema de Schrodinger temos (omitindo a dependéncia temporal dos operadores nos passos in-
termediarios):

(G3(t)) = Tr{p°G®} = Tr{Up"UUG U} = Tr{p" Ui G UL}
= Tr{p"UJ(t. t)G" (OUL(.10)} (7

Lembrando que no esquema de Heisenberg os vetores de estado sdo independentes do tempo, de
modo que p! = py corresponde a matriz de densidade no equilibrio.

No equilibrio (ndo-perturbado), temos U; = 1, logo:
(G5(t)), = Tr{p"G" (1)} ®)

Fora do equilibrio, em primeira ordem na perturbagdo, temos o operador de evolucao:

"Por exemplo, para um sistema em equilibrio termodinimico  temperatura 7', temos pj, o< e~ Fx/knT
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. t
Ui(tto) =1—+ | HL(t)dt )

h /i,
De maneira que podemos escrever (preservando apenas termos de 1* ordem):
.ot
1
U{(t, t0)G' (DU (¢, to) = G'(¢) + 7 / [G(8), B' ()] f(t')dt’ (10)
to

E obtemos o valor médio (eq. 7):

. t
(G0) =Tr{p G0} + 5 [ Tr{p" 610, B' )]0
to
. t
1
— (G50, + 5 [ (6L, ) ()
to
Com esse resultado, interessa-nos calcular o desvio do valor médio de um observavel A qualquer

entre um estado perturbado e um estado de equilibrio, definido por:

HAS(H) = (A5(0) - (A5, 1
Pelas equacdes (8) ¢ (11), podemos escrevé-lo como:
o) = 1 [0 B, 0 = 2 [ xeos@a ay
Onde definimos a funcdo resposta \'s -
Xap(tt) = Qh [A@®), B'(t)]),, (14)

Que quantifica como o observavel A no tempo ¢ € influenciado pela perturba¢ao no tempo ¢'.

2.1.1 Propriedades Funcao Resposta

A partir de agora, consideraremos apenas operadores G independentes do tempo (G° = G (t)).
Como as propriedades de x”} 5 dependem apenas de operadores no esquema de interagdo, denotaremos
G!(t) simplesmente por G(t). Operadores independentes do tempo serdo frequentemente denotados
sem sobrescritos (e.g. p’ = p ou BY = B), salvo algumas passagens explicitas para maior clareza.

Para um observével A° independente do tempo, demostremos primeiramente que Y’y 5(t, ') =

X'4p(t —t'), ou seja, que a fungao resposta depende apenas da diferenca de tempos. Notemos que:
/! / 1 / 1 / /
it ?) = 2 ([40). B, = o (AW BE),,~(BE)AD),,) (15)
E, analisando o valor médio (A(t)B(t')):
(A@)B(t')) = Tr{pA(t)B(t')}
= Tr{pUd (t — to) ASUy(t — to) UL (t' — to) B3 Uy(t' —to)}
= Tr{pUs(t' — to)Us(to — t) A°Us(t — to)U(to — ') B}

Onde usamos a propriedade ciclica do traco e o fato de que U, comuta com p (pois Hj € hermi-

tiano), bem como que UJ(t) = U;'(t) = Uy(—t). Finalmente, usando que Uy(t — to)Up(to — t') =



Up(t — '), temos:
(A)B(1')) = Tr{pUg(t — ) AUp(t — ') B%} = Tr{pASUp(t — ') BSUS(t — ')}
= Tr{pA(t —t')BS} = Tr{pASB(t — t')} (16)
= (At —¥)B®) = (A°B(t' 1)) (17)
Definindo 7 = ¢ — ¢/, temos a identidade (A(7)B”) = (A% B(—7)), e podemos escrever a funcio
resposta como:

Xap(t:t) = Xin(m (A(T)BS),,~(B*A(n)),,) (1)

§|H§|H

= g (A
= anll

Desse modo, vemos que x4 5(7) = —xh4(—7).

(ASB(— <B(—T)As>eq) (19)

2.1.2 Transformada de Fourier da Funcao Resposta

Definimos a transformada de Fourier \’jz(w) de x’iz(7) com as seguintes convengdes para a

transformada e sua inversa:

~I oo " WT " 1 +Oo~ Z —wT
e V@)= [ NipmdTdr Q) e Xip(r) = — / Nip@e ™ do Q1)

oo 2r J_
Alternativamente, podemos escrever:

N

Xap(w) = % ((Aw)B%),,~(BAw),,) (22)
Onde, naturalmente, A(w) denota a transformada de Fourier de A(7). Da propriedade (17), é facil
verificar que Y'jg(—w) = —Xh4(w).
Para obter uma forma mais explicita de X 5(w), fagamos a expansdo de p na base de autoestados

de Hy na expressdo de x4 5(7) (eqs. 18 ¢ 19) :
2h X4p(T) = Tr{pA(T)B — pB(—7)A}
= me[<i!m><m|A(T)B|i)) — (ilm)(m|B(-7)Ali)) |

=" pu[(mlA()BIm)) — (m|B(~7)Alm)) |

Inserindo um conjunto completo entre A e B e escrevendo G(7) = enHoT Qe HoT,
= > pu[(mleF0T ATH [n) (1] Blm)) — (mle”H07 Bet o7 n) (n] Alm)) |
=Y pmle™ T (m|Aln)(n|Blm)) — ™7 (m|B [n)(n|Ajm)) |

De modo que temos ’j 5(7) escrito explicitamente em termos dos elementos de matriz:



1 , .
X{AB (T) = % me [e_zwanAmanm o ezwananAnm} (23)

Finalmente, obtemos a forma explicita de x"j z(w):

~ 1 too oo
Xapw) = o me [Amanm/ el wnm)T _ anAnm/ gileinm)7]
= % me [Amanm(S(w - wnm) - anAnm(S(w + an)} (24)

2.1.3 Sum Rules

A partir da transformada da funcdo resposta (i.e. da sua distribuicdo espectral), definimos os

momentos ponderados pela energia:

1 [r .
i == [y s 03)
1
Onde usamos a eq. (24) na ultima igualdade. Entretanto, podemos reescrever m(ﬂ; como:
. Woptedr
(—i)Pmiyy) = — e TN
D dp " Y4 dp 7
=2h a Xap(t — to)‘t:toz 2N i XAB(T)L-:O (27)

Usando a definicao (18), e lembrando que derivadas temporais sdo dadas por (4), temos :

- o)
_(inp 1 q

ho (i)
= %<[£PA,B}> (28)

€q

7=0

([[-[[A, Ho)Ho] .. Hol, B] )

€q

Onde definimos a a¢fo adjunta £ por: LA = [A, Hy
Ademais, usando a equagao (17), podemos distribuir as derivadas temporais entre A ¢ B. Seja

[ + k = p, fazemos:

mﬁ%) - @ % <%t(’:)3>eq - <B%>J =0
ih)P )| / d*A(T) d'B(—7 dB(—1) d*A(r
-G (S04 () ||
- o) ”



2.1.4 Funcoes de Correlacao

De maneira similar 2 susceptibilidade x4 5(, ') = = ([A(t), B(t')])eq> consideremos a fungio de

2h
correlacao:
Cap(t,t') = <A(t)B(t’)>eq (30)
Note que podemos escrever:
Nan(t:t) = 52 [Can(t,t) = Calt, )] a1

De modo que se ndo ha correlagdo entre A e B, x/iz(t,t') é identicamente nulo e, portanto,
d(A(t)) =0, ou seja, a perturbagdo ndo desloca o valor médio do observivel A do equilibrio.

Por dedugdes completamente andlogas ao caso de x’y g, € facil verificar uma série de proprieda-
des de C4p(t,t"). Por exemplo, decorre imediatamente da eq.(17) que a correlagdo s6 depende da

diferenca de tempos: Cup(t,t') = Cap(t —t') = Cap(7). E, definindo sua transformada de Fourier:

Cap(w) = / Cap(T)e“Tdr (32)

o0

¢ imediato verificar (eqs. 23 e 24) que as formas explicitas de Cap(7) € C 45(w) numa base de

autoestados de H, sdo dadas por:

Cap(r) =Y pm (m|An)(n|B|m)e (33)
Cap(w) =27 pm (m|A|n)(n|B |m) 6(w — wom) (34)

E, assim como fizemos para a funcao resposta, definimos também os momentos ponderados pela

energia da fun¢do de correlacdo como:

1 [t .
m(j% = o | (hw)PCap(w)dw (35)
= pm(hwnm)? (m|A|n)(n|B|m) (36)

Novamente, por uma dedugdo inteiramente analoga a da eq. (29) (essencialmente trocando comu-

tadores por produtos em todos as passagens na sec¢ao 2.1.3), obtemos a expressao:

miy = (~1)'((£*4)(£'B)) (I+k=p) 3D

eq

Em particular, interessa-nos estudar o caso em que A = B (explicitamente, A% = B), ou seja,
em que o observavel € a propria perturbacao (na verdade, proporcional a perturbagdo, pois esta tem
uma modulagdo temporal g(¢). Um exemplo simples seria um operador de posi¢do de uma particula
em 1 dimensdo: A = z, e uma perturbacgio que “chacoalha” a particula do tipo H;(t) = avcos(t) x ).

Nesse caso, a expressao (36) € simplesmente:



m¥ =m%) =" pr(hwnm )| (m] Aln) | (38)

m,n

Em particular, no caso de o estado de equilibrio ser simplesmente o estado fundamental (isto é, no

caso de estarmos em temperatura zero) temos simplesmente p7 = |0)(0| € p,, = d,n0, de modo que:

m{ (T =0) =Y (heou)"| 0] Alm) | (39)
E da expressdo (37) podemos escrever: ’
m = (~D((LFA)(L'A)),, = %(—nl {(LE (L)), + (DR (LA LrA), | @
Que pode ser sumarizado em termos de comutadores ou anti-comutadores:
° mff) = %(—1)l<[£kA,£lA}>eq p impar 41)
oem?) = %(—1)%{5’%, L'AY)., p par 42)

2.1.5 Frequéncias de Excitacao de um Sistema Genérico

Dados os resultados construidos ao longo dessa secao, mostremos agora como podemos utilizi-los
para extrair frequéncias de excitacdes de baixas energias de um sistema genérico.

Na base |n) de autoestados de Hy, convencionamos as energias F,, ordenadas da forma E, <
E, < Ey < Ejs..., de modo que as frequéncias de Bohr associadas ao estado fundamental |0) (w,,0 =
(E, — Ey)/h) obedecem a wiy < wqy < wsp... . Seja B = A a parte independente do tempo da
perturbacdo associada a um modo coletivo de nosso interesse, esse ordenamento de frequéncias nos

permite escrever a desigualdade:
oo O P 457, [ (O1Al) P(wno/w10)* 1 mfY
T OIAID) P+ X0 [ (0[AIR) P(wao/wio) — B2 )

Onde usamos a expressao (39) na igualdade a direita. Temos entdo um limite superior para esta

(43)

energia de excitagdo:
(3)
potrer | o

0

Note que esse € um limite rigoroso no caso da excitacdo de mais baixa energia, mas 0 mesmo nao
¢ verdade para os demais modos. Entretanto, espera-se que esse seja um bom limitante para modos
de energia suficientemente baixa.

O que € conveniente na equagao (44) é que, através dos Sum Rules (equacgdo 41), podemos es-

(1) ®3)
A

crever os momentos m,° € m,  em fun¢do de valores médios de comutadores de H;, e A no estado

fundamental:



mly) = —1(0][£°A, L' A]|0) = —1 (0|[A, [H,, A]]|0) (45)

my) = +1(0|[£'F, £2F)(0) = —1 (0| [[A, Ho). [Ho, [Ho, AJ]] |0) (46)

Nossa abordagem consiste em calcular explicitamente esses comutadores e valores médios para
alguns operadores A especificos obtendo a frequéncia correspondente na equagdo (44). A rigor, o
método fornece cotas superiores para essas energias; originalmente aplicado num contexto de gases
quanticos numa armadilha harmonica em [1, 2], ele fornece valores em excelente acordo com dados
numéricos e experimentais para os modos coletivos naqueles casos. E, de fato, se considerarmos um
acoplamento suficicientemente seletivo — isto é, um operador A que acople o estado fundamental |0)
a um estado excitado |p), de modo a termos |(0|A|p)|* >> [(0|A|n#p)|* — a expressdo (43) nos d4
praticamente uma igualdade:

2 o [{01AID) P+ 37,4, [ 0lAIn) P(wno/wpo)® 1 m)

W, = W =
P OLAIR) 2+ Xz [ OAIR) Pwno/wpo) B2 )

Finalmente, apontamos que uma outra abordagem mais rigorosa e comumente utilizada consiste

(47)

em descrever a densidade do sistema como a densidade de equilibrio adicionada de uma flutuagdo
(n(x,t) = ne,(x)+dn(x, t)) e encontrar, via equagdes hidrodindmicas, os modos normais de oscila¢do
para on [10]. Entretanto, essa abordagem é consideravelmente mais complicada que a aplicagdo de

Sum Rules, sobretudo quando ndo temos mais simetria esférica no estado de equilibrio.

2.2 Sistema Fisico e Caracteristicas de Equilibrio

O nosso sistema fisico de interesse € um gas bosonico aprisionado numa armadilha tipo bolha,
cujo potencial € descrito por um oscilador harmdnico radial isotrépico cujo minimo esta localizado
numa casca esférica de raio ry:

1
Utrap(r) = §Mw§(r —7)? (48)

e cujos atomos interagem entre si por interagdes de contato (espalhamento de onda s) e dipolo-dipolo,
nas quais todos os dtomos tém seu momento de dipolo i alinhado paralelamente a uma certa direcao

(que convencionamos ao longo do eixo z). Podemos escrever esse potencial na forma:

3€dd 22
Vint(x) = Vs v, =g1d (1 = 3—> 49
) = Vi) + Vi) = 9 {000 + 2 (13,55 | 49)
Onde g = %as estd relacionado ao comprimento do espalhamento de onda s € egg = u?/3g é

proporcional ao momento de dipolo ao quadrado de cada 4tomo e quantifica a magnitude relativa das

interacoes dipolares em relagdo as de contato. O sistema € ilustrado pictoricamente na Figura 1:
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Ressaltamos que um potencial de confina-
mento tipo bolha é produzido através de po-
tenciais adiabdticos vestidos de radiofrequéncia
[5] (sobre os quais ndo entraremos em maiores

7 detalhes), para o qual a aproximagao harmonica
(eq. 48) € valida no limite em que temos uma
casca esférica muito fina, ou seja, num regime

de forte confinamento no qual a espessura ra-

dial tipica do condensado (r;) € muito menor

Figura 1: Ilustracdo qualitativa do sistema, com atomos
dipolares dispostos ao longo de uma casca esférica, com )
momento de dipolo alinhado ao longo do eixo z. ro/T1, escrevemos essa condigdo como ¢ >> 1).

Levando em conta os potenciais de aprisionamento (48) e de interagao (49), temos o hamiltoniano:

que r( (definindo o parametro adimensional ¢ =

pi? 1

HO = Hkm + Htrap + Hint = Z INM + §ng(ri_r0)2 + Z ‘/int(xi_xj> (50)

i j<i

onde 7; = |x;|, e a soma se d4 sobre todas as particulas do sistema.

Dado o hamiltoniano do sistema nesse regime, a primeira tarefa de interesse € obter seu estado
fundamental: além de ter grande interesse intrinseco, por determinar as propriedades de equilibrio do
sistema numa fase condensada, ele € necessdrio para calcularmos explicitamente as expressoes dadas
pelos Sum Rules (eqs. 45, 46). Entretanto, seu cdlculo ndo faz parte do escopo deste trabalho, tendo
sido realizado por um aluno de mestrado do grupo. Nos limitamos a descrevé-lo em linhas gerais e
discutir os principais aspectos dos resultados.

A abordagem consiste em assumir um Ansatz da forma:

P(x) = AN gy, Y0, 0) (51)

I,m

onde .4 € uma constante de normalizacdo, e separamos a dependéncia radial e a angular, de maneira
que temos um sistema radialmente congelado no estado fundamental de um oscilador harmdnico
e uma fun¢do angular genérica que aparece expandida nos harmonicos esféricos Y™, para a qual
queremos obter os coeficientes a; .

Devido a anisotropia introduzida pela interacao dipolo-dipolo (que diferencia o eixo z dos de-
mais), ndo teremos um estado fundamental esfericamente simétrico. Entretanto, ainda temos simetria
azimutal e por paridade, de modo se espera que contribuam apenas os harmonicos esféricos com
m = 0 e [ par. Esses coeficientes foram calculados através de uma minimiza¢do numérica da energia

do sistema, onde a expansdo foi truncada num certo valor [,
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De fato, o estado fundamental obtido apre-

. . 0.304 — &4 =1000
senta as simetrias esperadas. Para €54 = 0 fag=4
. . .~ . . 0.251 —_— Egg=2
temos distribuicdo uniforme de densidade, e, =1
0.20 N =
conforme aumentamos €44, aparece uma de- —~ €aa =05
2 — Ew=025
A . o X 4
pendéncia em #: o condensado passa a se ra- & 013 — &w=0
refazer nos pdlos (=0 e # =), e a se con- 0.101
centrar ao redor do plano equatorial (0 =7/2), 0-05 ] J LL
conforme ilustra a Figura 2. Esse comporta- o.oo-
p n/4 n/2 3n/4
mento estd de acordo com o que se pode es- 6 (rad)

Figura 2: Densidades de equilibrio para diversos
valores de €44. Nota-se picos de densidade cada vez
puramente repulsiva nos polos, onde os dtomos mais acentuados em 6 = /2 2 medida em que €44
aumenta. Aqui ne,(6) é proporcional a [¢(ro, 0)|>.

perar intuitivamente, pois a interagdo dipolar é

estdo dispostos lado a lado, mas tem uma com-

ponente atrativa no equador, onde parte dos atomos estdo “acima’ ou “abaixo” uns dos outros.

3 Aplicacoes: Modos Coletivos

Com a abordagem dos Sum Rules, calculamos a seguir as frequéncias de 3 modos coletivos de
interesse. A aplicagdo € ilustrada em detalhes para o modo de monopolo, que € particularmente sim-
ples, apontando algumas caracteristicas importantes do método e calculando algumas passagens nao
triviais. Nos demais modos, nos limitamos a exibir e discutir os principais resultados. Em todos
os casos, calculamos as expressdes numa armadilha cheia (com ry = 0, a qual nos referimos sim-
plesmente como armadilha harménica), recuperando expressdes conhecidas [2], e na bolha (o #0).
Nesta ultima, calculamos valores médios numericamente a fim de comparar com resultados obtidos

via equacdes hidrodinamicas [3].

3.1 Breathing Mode: Operador de Monopolo

Esse modo corresponde a contracdes e expansdes radiais do condensado, que ocorrem em fase
em todas as dire¢des do espago. Excita-se essa oscilagdo com uma perturbacdo H,(t) = g(t)A, que

modula o confinamento radial temporalmente, por exemplo:
H,(t) = acos(Qt) Z 7’? = Apon Z T (52)

Nao havendo ambiguidade dentro de cada subse¢do, nos referlremos a operadores de excitacao
especificos simplesmente como A, e a seus momentos m(f) como my,.
Note que A sé envolve fung¢des das posi¢des x;, de modo que seu comutador com Hy sé envolve o

termo cinético: [Hy, A]= 5= ,[pi, A]. Desse modo, caracteristicas particulares da armadilha e das
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interagdes s6 aparecem em comutadores de ordem mais alta (como [Hy, [Hy, A]]). Isso ocorre para
todos os operadores de excita¢do aqui considerados, simplificando a tarefa de considerar diferentes

armadilhas e termos de interacao.

3.1.1 Armadilha Harmoénica
Tratemos primeiramente do caso mais simples e bem conhecido de uma armadilha harmonica
isotropica centrada na origem, isto €, tomando ry = 0 no nosso potencial de aprisionamento. Temos

os comutadores:

22h h
o [Hy, A QMZpI, ) = i {xi-pi+ 3} (53)
o [A,[Ho, Al = 57 D (54)
1 2h? 2h? AR?
€ 0 momento mq: my = §<[A, [H(),AH) = ﬁ : <T’12> = ﬁ < > MTQ}%<U> (55)

Onde N denota o niimero total de particulas do condensado. Na tltima igualdade, reescrevemos
o valor médio (r?) em termos do valor médio da energia potencial de aprisionamento (U). J4 para o

momento ms, precisamos dos comutadores:

o [Ho, [Ho, A]] = ﬁ{ _ _Zpl —|—Mw02r +ZZ X+ Vigy Vit (X ))} (56)

OHA,HO],[HO,[HO,AH == {szl y Xi +ngle ph z]
+ Z Z(Xl : [Pl ,Xk'kath(Xi - Xj)])}
4pt | 2 9
:W{M2p1+2Mw ZT —I—ZZ{& X1 Xk Vi Vit (Xi ))}}
{MZpl + 2MW§Z7’ +Z{ xi — %)V ((xi —Xj)'Vth(Xi—Xj))}} (7)

Onde, na ultima linha, subentende-se que a diferenciagdo representada pelo operador V (sem
indice) se da em relag@o ao argumento da fungdo x; — x;.

Note que os diferentes termos nao-cinéticos do hamiltoniano ndo se misturam; as contribui¢cdes
provenientes do termo de aprisionamento e de cada termo de interacdo simplesmente se somam. Isso
continua valendo ao tomarmos o valor médio (que € uma operacdo linear) e se aplica a todos os
operadores de excitacdo A que aqui consideraremos, pelo simples fato de A depender apenas de x;.

Calculando entao o momento ms, temos:

1 2k

my = S(|[4, Hol, [Ho, [Ho, All]) = W(4<T> +4(U) +1) (58)

13



onde: [ = Z/d‘garl n(x;) / dPx;n(xg)[(xi — x3)-V((xi — x3)- VV(x; — x5)) ]

i<j
=> / &R /d3X n(R+X/2)n(R—X/2)[X -V (X-VVip(X))] (59)

i<j
ER = %(xi + xj) e X = X; — Xj sdo, respectivamente, a coordenada de centro de massa ¢ a
coordenada relativa. Procedemos, entdo, expandindo as derivadas em (59) e fazendo integracdes por
partes, nas quais se anulam termos de superficie e termos com integrando proporcional a XV, (X).
Os tnicos termos que contribuem sdo proporcionais a n(R + X/2)n(R — X/2)V;,:(X), resultando:
=9 [ @R [ @ n(® 4 X/2n(R - X/2Viu(X) = 9(Hi) (60)

i<j

Ou seja, acabamos com um termo proporcional a energia média de interacao. Finalmente, temos

a frequéncia de excitagdo:

20 o _my _ RPwy (KT) +4U) + 9(Hin)
h wmon - my - 9 ( <U> ) (61)
4T+ 4 H;,
= Wmon = WO\/ < > i <2({[>]>—i_ 9< t> (62)

E, notando que na armadilha harmonica (r, = 0), vale U(ax) = a?U(x), € que para 0 nosso

potencial de interagdo vale Vj,;(ax) = a3Vj,;(x), o Teorema o Virial d4 a relagio:

2(T) — 2(U) + 3(Hns) = 0 (63)
de modo que a frequéncia (62) pode ser reescrita como em [2]:  Wyon = Woy/D — (T>/<U ) (64)

3.1.2 Armadilha Tipo Bolha

Conforme discutido na se¢@o anterior, uma mudanca na armadilha ndo afeta os comutadores de
ordem mais baixa [Hy, A] e [A, [Hy, A]], de modo que a expressio para m; continua sendo:
2h?

my = WN<T2> (65)

Mas ndo vale mais a tltima igualdade de (55), pois na bolha (U) ndo é proporcional a (r?), mas
sima ((r —7)?). Note também que, apesar de a expressio ser a mesma, isso ndo significa que o valor
de m; € o mesmo, pois agora o valor médio estd sendo avaliado no estado fundamental da bolha.

Ja nos comutadores de ordem mais alta s6 aparecem modificagdes no segundo termo (referente a

energia de aprisionamento). Para [Hy, [Hy, A]] (eq. 56) esse termo se torna:
Mwj Z r? = Muw] Z (r7 —rory) (66)

Isso acarreta uma mudanga no termo correspondente em [[A, Ho), [Ho, [Ho, A]]] (eq. 57):
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(67)

2Mw§2ri2 — MwSZ(Qr?—rom)

De modo que a tnica modificagdo em relagdo a armadilha harmoénica é o termo subtraido na eq.

(67). Tomando seu valor médio, temos 0 momento:
YT + 2MwiN (r?) + 9(H;p) — Mwirg Z / dx; n(xi)r-]
(68)

ap
"= g
i A(T) + 2MWBN ((r2) = 34r))+ 9 Hin)|

e
Nessa expressdo, € conveniente eliminarmos o valor médio (r?) em favor de (U) e (r), de maneira
1/2
+9(H;y,
< t>] )

que obtemos a seguinte expressao para a frequéncia:
UT) + 4U) + NMwi(3ro(r) — 2r3)
2(U) + NMw3 (2ro(r) — 1)

1 ms
= Wy

Wmon = ﬁ my
Que se reduz a expressdo (62) para ro = 0. Note que, na bolha, deixa de valer que U(ax)

a*U(x), de modo que ndo podemos mais eliminar ( H;,,;) da expressdo por meio do Teorema do Virial.
(70)

Entretanto, podemos ainda simplifica-la notando que (r) = 7 no limite de casca fina r; << 7¢:
AT + AU + 9 Hy) + Nngrg} 12

w =

mon 0 { 2(U) + N Mw?2r?

Dessa expressao, fica evidente que w;,,, tende a se aproximar da frequéncia da armadilha con-
forme r( cresce. E entdo de se esperar que no limite de 7 “muito grande” (N Mw?ro>> (U), (T}, (H),

teremos que Wi, = wy. A rigor, € claro, € necessdrio avaliar com cuidado como os valores médios

De fato, obtemos na bolha frequéncias de

seguintes valores de frequéncia para uma casca com ¢ = r¢/r; = 20:
monopolo muito préximas de wy (com des-

vios inferiores a 1072), que € 0 mesmo resul-

tado obtido via equagdes hidrodindmicas no

da energia mudam conforme 7, cresce para verificar essas tendéncias. Numericamente, obtivemos 0s

. Wmon

1.010
1.008 4
[ ]
1.006 q
regime nao dipolar (e;3=0) [3]. Como temos
uma casca de espessura finita, e esperamos que

1.004 1 o
L]
Wmon > W na armadilha harmonica (eq. 64),

wltg

1.002 4
de fato esperariamos obter wy,,,/wy ligeira-

1.000 ~
mente maior que 1 nesse limite. J4 ao aumen-

tar €44, observa-se uma ligeira diminui¢ao nas

0.998 1

0.996
1 2
Edd
Figura 3: Frequéncias relativas de monopolo para ¢ = 20. frequéncias, apresentando uma discreta assi-

natura da interagao dipolar.

Para €;5 — 0, Wpyon, s€ torna muito préxima de wy.
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3.2 Modo de Quadrupolo (|m| = 2)

Esse modo corresponde a uma excitacdo em que a componente z permanece estdtica, enquanto
as componentes x e y expandem e contraem fora de fase (ele é identificado como |m| = 2 pois
essa excitagdo escrita em termos de harmdnicos esféricos Y;™ é proporcional a Y;2 + Y, 2 [2]). Essa
excitagdo ¢ realizada provocando variagdes dw (<< wy) na frequéncia de aprisionamento em z e y
em oposi¢do de fase, de maneira que o operador A associado é da forma:

2 2\7,,.2 2 2\7, 2 2 2
A=z = Y _[((wo +0w)? = wi) Ja? + [((w0 — 0w)® — i) | & 2wp dw Y (o —9) (D)
i i
Onde ignoramos constantes escalares multiplicativas (que se cancelam na razao mg/m;). Temos:
2 .2
Apj=2 = > (27 = 4}) (72)
i

3.2.1 Armadilha Harmonica

Em relacdo ao momento m;, temos:

4h? 2h? 8h?
(A [Ho, All = = > (#f +47) = mlzﬁ<2(9€?—l—yf)> et 03

) 7

Onde (U, ) denota o valor médio da energia potencial em uma dire¢do no plano xy:
1
(U) = Uy) = (Us) = §Mw32<x?> (74)
E, em relagdo ao momento ms, temos o comutador:

[[A, Hol, [Ho, [Ho, A]]] = f;{MZ P2+ p2) + 2Mw? Z x? +y?)

8‘/7,717& 8 a‘/znt 82 znt
+Z< ij aX”[ TOX, (Xij)h}/z'ja—%[nj—ayij (Xij)} 2Xwaan v, (X5 ))} (75)

Ao tomar o valor médio em (75), hd um cancelamento entre a contribuicao dos termos puros e dos

termos cruzados de interacao (por simetria azimutal), simplificando bastante a expressao para ms:

g = 1]\6;4 (1) +(w)) (76)

Onde definimos (7', ) de maneira andloga a (U ):

(1) = (T,) = (L) = 51 3 ) )

%

Finalmente, obtemos a frequéncia (como em [2]): Wim|=2 = Wo \/ 2(1 +(T.)/{U L>) (78)

3.2.2 Armadilha Tipo Bolha

Como nos demais casos, os comutadores de ordem mais baixa e a expressdo para m; permanecem
inalterados (ndo valendo mais a dltima igualdade em (73), pois (U) ndo é proporcional a (r?) nessa

armadilha). Pela simetria azimutal do estado fundamental, podemos reescrever m; como:
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(79)

4h?
mi =S N {(z?)
Também como nos demais casos, altera-se somente o segundo termo (referente a energia potencial

da armadilha) dos comutadores de ordem mais alta. Temos a altera¢do na eq. (75):
2 2
To x; —y;

DM (@ +y?) > MY [ (1 D) 80

“o i (Iz Yi ) Wo i Til 7 To 27”? ( )

Onde r?| = 7 + y?. Pela simetria azimutal do sistema, o valor médio do dltimo termo se anula,
(81)

de maneira que ele ndo contribui para ms. Ficamos entdo com:
_ YT\ )+ 2NMwi(r? (1 — 2
Ademais, se o pico de densidade na direcao radial for suficientemente estreito, de modo que quase

(Tz)

toda a contribuicao na integral vier da regido r ~ r(, o segundo termo se torna praticamente nulo, e
82
NM(22) (82)

Wim|=2 = 2

ficamos com: A
16k
ms = IVE <TJ_> =
Calculamos alguns valores dessa frequéncia numa casca esférica com c = 20, conforme exposto

na Figura 4:
0.07075 Os valores obtidos para as frequéncias de qua-
drupolo sdo consideravelmente menores do que wy,
especial, no limite ndo dipolar, isso € precisamente

o que € descrito na literatura no limite de casca fina

com quase 2 ordens de grandeza de separagdao. Em

0.07074

observando a expressdo explicita, obtida via

0.07073 4
[3]:
equacgdes hidrodindmicas em [3], esse modo tem
LS

W/Wo
L]

0.07072

uma frequéncia relativa da ordem de ¢~
[(I +1)/3, e identificando o modo de qua-

2

1 3 4
£ c_lwo
drupolo com [ =2, temos w/wy =/2/20~0,0707,

0.07070
0
Figura 4: Frequéncias de oscilacdo do modo de
quadrupolo |m| = 2 numa casca com ¢ = 20.
que € precisamente o resultado que obtemos para esse quadrupolo para €54 — 0. Nota-se ainda que

essas frequéncias variam muito pouco com €44, com variacdes da ordem de ~ 102wy~ 10~ %w.

3.3 Oscilacoes de Centro de Massa: Operador de Dipolo

Os modos de dipolo correspondem a oscilagdes do centro de massa do sistema em torno da

Ayzzyz Azzzzi
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configuracdo de equilibrio. Consideramos entdo 3 perturbacOes, proporcionais a deslocamentos ao
(83)

longo dos 3 eixos coordenados:



3.3.1 Armadilha Harmonica

Com a escolha de operadores feita acima, € simples demonstrar (ver secao 3.3.3) que termos de
interacdo nao modificam as expressdes para as frequéncias, conforme seria de se esperar para uma
oscilagc@o de centro de massa, o que simplifica enormemente as contas. Escolhendo, por exemplo, a

direcdo x para efetud-las, obtemos os comutadores:

1 ih
o[Hy, A,] = oY Z[Pia T;] = Vi pri (34) | Que nos ddo os momentos:
i i Nh?
ih h? my = (88)
M i Z M Nh*w?
ms = . (39)
o[Hy, [Ho, As)] = WPl Y x; (86) 2M
i E a frequéncia de excitagdo:
hiw? ‘
.[[Awa HO]) [HOa [H07 Az”] - M N (87) thf: = % = Wy = Wy (90)
my

E € fécil ver que os resultados sdo idénticos para oscilagdes nas dire¢des y e z. Vemos que para
a armadilha harmoénica, a frequéncia de oscilagdes do centro de massa € precisamente a frequéncia
da armadilha wy, independentemente das interacdes no condensado, em perfeito acordo nao s6 com
os resultados conhecidos para esse método [1, 2], mas também com o que € conhecido da literatura

acerca desses modos.

3.3.2 Armadilha Tipo Bolha

Os comutadores [Hy, A,] e [As, [Ho, A;]] sdo os mesmos da armadilha cheia, bem como o mo-

mento m;. Os demais comutadores passam a ser:

o[Hy, [Hy, A;]] = ihoy Z[pz (ri —r0)?] = Rluwg(1— E)xi 1)
) ) 2 i i) 0 ri
ih3w? _ hiw?
[[Av, Hol, [Ho, [Ho, Aul)] = =237 (Ipavwid = rolpas 2]) = 2N = L) (92)
- _ r; — ] yi + 27
Onde definimos: J. =19 Z = =1y Z T 93)

E vemos que esse comutador resulta num termo idéntico ao caso da armadilha harmonica sub-
traido de um termo estritamente positivo. Temos entdao o momento mg3 e a frequéncia de excitagao:

Nhtw2 1 1 [mg 1 12
— 1——(J, = wy=—/—=wp|l— = {(J; 94
s 2M ( N< >> h\ my 0 { N< >} ©4)

O resultado € analogo para para oscilacdes em y € z, bastando substituir o operador J, por J, ou

2 2 2

7’.2— ‘ ry — Z:
JyErOZ—Z 3‘% JZETOZ ! 3 L (95)

re re

i ¢ i ¢

J., definidos por:
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Note que em todos os casos a frequéncia de oscilagdo € estritamente menor que a frequéncia da
armadilha (w,, w,, w, <wp), em contraste com os resultados extensivamente conhecidos em armadi-
lhas harmonicas usuais, nas quais oscilacdes de centro de massa ocorrem sempre na frequéncia wy,
acusando uma assinatura muito caracteristica da armadilha tipo bolha.

Além disso, note que nessa armadilha, apesar de as interacoes ndo modificarem as expressoes
das frequéncias, elas modificam o seu valor, pois elas alteram qual € o estado fundamental no qual
tomamos a média dos operadores. Quando nao ha interacao dipolo-dipolo (45 = 0), o estado funda-
mental € esfericamente simétrico e as frequéncias de oscilacdo sao isotrépicas. Entretando, quando
essa interac@o estd presente, temos somente simetria azimutal, de modo que w, = w, # w,. Nossos

resultados numéricos estao dispostos na Figura 5:

De fato, as frequéncias w, e w, convergem para
0.8 4 n Why/Wg
o Wlwo €sg — 0, num valor nas vizinhangas de wy/A/3:
0.7 .
. . esse valor de fato € esperado nesse limite, pois para
0.6 m "
______________________________ S, . A 2N _ /.2\ _17/.2
S t. wolV'3 uma densidade homogénea (z%) = (2%) = 3 (r%),
0.5 4 * R . ..
3 de modo que é facil verificar que, no limite de
*
041 casca fina, (J,) = (J.) = 2N. Entretanto, os re-
*
0.3 . sultados conhecidos da literatura [3] apontam que
0.2 a frequéncia desses modos vai a zero no limite de
0.0 05 10 15 2.05 25 30 35 40 45 cagca fina. Em principio isso ndo contradiz o re-
dd

Figura 5: Frequéncias relativas de dipolo para sultado que obtivemos, que se trata de um limite
¢ = 20, para oscilagdes nas direcdes x e 2. Para
eaq = 0 as frequéncias coincidem em wy/ V3. A

medida que €44 aumenta, w, cresce € w, diminui.

superior para a frequéncia, mas € curioso que dei-
xamos de ter uma igualdade aproximada.

Ja quando aumentamos a interacdo dipolar, o comportamento observado € que a frequéncia em
z diminui enquanto que a em x aumenta. Isso ja era de se esperar, dado a forma de J, e J, e o
comportamento do estado fundamental a medida que €;; aumenta: a densidade diminui nos pélos e
se acumula ao redor do equador, de modo que (2?) diminui e (2?) aumenta. Num caso limite em que
a densidade colapsa completamente no anel equatorial, terfamos (z2) = 0 e (z%) = (y?) = % (r?), de

2 2 2

modo que w, se anula € w,, w, tendem a wy /\/5

3.3.3 Termos de Interacao

Demonstremos agora que adicionar um termo genérico de interacdo no Hamiltoniano H,;,; =
> ic; V(Xi — x;j) ndo altera as expressdes das frequéncias.
E fécil ver que H;,; ndo altera as expressdes para [Hy, A,] e [A,, [Ho, A;]] (e consequentemente

para m;), pois H;,; ¢ A comutam. Entretanto, em pricipio, a interagao poderia contribuir para comu-
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tador [Hy, [Hy, A.]] (egs. 86 € 91), com um termo da forma (eq. 85):

ih h? oV
i > Vixi— Xj%%jpxk] = > a_xk((xi - xj))

i<j 1<jik
h? 0
i ZKJ. [Zk (00 = 05 5 V(X)| =0

Onde o somatério em £ trivialmente se anula, pois hd um termo com k=1 e outro com k =j.

4 Conclusoes

A abordagem dos Sum Rules, ja bem testada na literatura para geometrias usuais, se mostrou
bastante promissora para calcular frequéncias de excitagdo de um condensado numa armadilha tipo
bolha: no limite ndo dipolar obtemos, através de calculos analiticos e com relativa facilidade, resul-
tados para as frequéncias de excitacdo em excelente acordo numérico com a literatura nos modos de
monopolo e quadrupolo — para os modos de dipolo, sdo obtidos valores fisicamente razodveis, mas
em tensdao com os resultados obtidos por equagdes hidrodinadmicas, requerindo ainda ulterior andlise e
discussodes; além disso, foi possivel prontamente estender esses resultados para considerar interacoes
dipolares, destacando suas assinaturas caracteristicas nas frequéncias desses modos.

Destacamos que o presente trabalho faz parte de um artigo submetido ao Scientific Reports sobre

condensados numa armadilha tipo bolha [11].
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