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Resumo

Neste trabalho, estudamos oscilações coletivas de um gás quântico bosônico com interações di-

polares em uma armadilha tipo bolha, na qual os átomos são fortemente confinados em uma casca

esférica. Essa geometria apresenta caracterı́sticas bastante distintas do caso de uma armadilha “cheia”

devido ao aparecimento de uma fronteira interna: em particular, surgem assinaturas especı́ficas em

seus modos de oscilação. Ademais, ao considerarmos interações dipolares, observamos mudanças

caracterı́sticas no estado fundamental e frequências de oscilação do sistema. Mostramos aqui como,

com uma técnica perturbativa particularmente simples, conseguimos obter expressões analı́ticas de

limites superiores (i.e. desigualdades) para frequências de diversos modos de oscilação do sistema, as

quais dependem somente de suas caracterı́sticas no estado de equilı́brio. O que é interessante nesse

método é que essas desigualdades são frequentemente saturadas, fornecendo valores que correspon-

dem, em excelente aproximação, às frequências de oscilação de fato. Nossos resultados recuperam

expressões conhecidas no caso de uma armadilha cheia [1, 2], e tanto nesse caso quanto para a arma-

dilha tipo bolha sem interação dipolar [3], para os quais existem resultados conhecidos, elas fornecem

frequências em excelente acordo com valores medidos experimentalmente ou calculadas por métodos

independentes, como equações hidrodinâmicas.

1 Introdução

Há mais de 20 anos, o estudo extensivo de gases quânticos ultrafios e, em particular, da condensação

de Bose-Einstein em tais sistemas tem se mostrado uma área extremamente prolı́fica, e que permitiu

grande avanço no entendimento de uma mirı́ade de fenômenos, tais como superfluidez, supercondu-

tividade e turbulência. Nesse contexto, átomos dipolares, devido à sua interação anisotrópica e de

longo alcance, apresentam uma enorme riqueza de novos fenômenos e comportamentos [4].

Armadilhas tipo bolha recentemente se tornaram possı́veis experimentalmente graças ao uso de

potenciais adiabáticos vestidos de radiofrequência [5]. Estas levantaram muito interesse teórico e

experimental no estudo de tais sistemas em geometrias diversas daquelas exploradas em armadilhas

usuais: em particular a própria geometria de uma bolha, que difere drasticamente de uma esfera cheia

devido ao aparecimento de uma fronteira interna. No entanto, esta última é impraticável de se obter

experimentalmente na superfı́cie da Terra, devido à gravidade, que tende a acumular átomos no fundo

da armadilha. Não obstante, tanto do ponto de vista puramente teórico (onde é muito fácil “desligar”

a gravidade), quanto da realização experimental, com um experimento lançado à estação espacial

internacional no último ano [6], essa é uma geometria extremamente interessante de ser explorada.
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Nesse contexto, uma extensão natural é investigar o comportamento de condensados de Bose-

Einstein sujeitos a interações dipolares numa armadilha tipo bolha, e como a ação conjunta da geo-

metria e da interação influencia suas caracterı́sticas. Até o momento não há resultados na literatura

sobre esse tipo de sistema.

De fato, esse sistema apresenta grandes dificuldades para um tratamento analı́tico rigoroso. En-

tretanto, ele se mostrou um terreno bastante fértil para estudar e aplicar uma método perturbativo de

amplo escopo, derivado da teoria de resposta linear no formalismo de Kubo [7], recorrendo a Sum

Rules. Além da multiplicidade de aplicações, que incluem gases quânticos ultrafrios [1, 2, 8], esse

método apresenta relativa facilidade técnica.

Neste trabalho, nos propomos a analisar algumas caracterı́sticas dinâmicas de condensados dipo-

lares numa bolha, a saber, as frequências e energias de alguns dos seus modos coletivos de oscilação,

a partir da teoria de resposta linear. Na seção 2, desenvolvemos as ferramentas necessárias para essa

do problema e mostramos como elas podem ser aplicadas a um sistema genérico, especificados ape-

nas seu hamiltoniano e estado de equilı́brio. Na seção 3, usaremos essas ferramentas para calcular

explicitamente as frequências de alguns dos principais modos coletivos de interesse no nosso sistema,

comparando os resultados com os casos limites conhecidos na literatura [1–3], de uma armadilha

cheia ou de uma bolha sem interações dipolares.

2 Fundamentos Teóricos

Na presente abordagem para obter frequências de oscilações coletivas do condensado, precisa-

remos lançar mão de alguns resultados do formalismo de Kubo [7, 8], que desenvolveremos de um

modo bastante geral a seguir. Esses resultados, por sua vez, fornecem expressões perturbativas para

as frequências, que são avaliadas no estado de equilı́brio do sistema, de modo que esboçaremos como

este foi calculado numa armadilha tipo bolha e quais as suas principais caracterı́sticas nessa geometria

na presença de interações dipolares.

2.1 Formalismo

Abordaremos os modos coletivos do condensado como uma resposta linear do sistema [7, 9] a uma

perturbação (potenciais externos dependentes do tempo). Na prática, a perturbação considerada para

cada modo está associada ao tipo de potenciais oscilantes utilizados para excitá-lo experimentalmente.

Para isso, analisaremos o caso mais geral de como um sistema reage a uma perturbação depen-

dente do tempo (em 1ª ordem): em particular, como seus observáveis se desviam do equilı́brio e se
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correlacionam à perturbação. Consideremos um hamiltoniano perturbado da forma:

H(t) = H0 +H1(t) = H0 −Bf(t) (1)

Onde B é um operador independente do tempo e f(t) é uma função escalar do tempo. Queremos

que a perturbação H1 comece a atuar num instante t0 (ou seja f(t) = 0, ∀ t < t0).

H tem o operador de evolução temporal U associado:

U(t, t0) = U0(t, t0)U1(t, t0) onde: U0(t, t0) = e
i
~H0(t−t0) (2)

Usando os sobrescritos S,H ,I para denotar vetores de estado e operadores nos esquemas de

Schrödinger, Heisenberg e Dirac (ou de interação), respectivamente, temos as relações:

|ψH〉 =U †(t, t0) |ψS(t)〉 GH(t) = U †(t, t0)G
S(t)U(t, t0)

|ψI(t)〉 =U †0(t, t0) |ψS(t)〉 GI(t) = U †0(t, t0)G
S(t)U0(t, t0)

E convém lembrar que nos equemas de Heisenberg e Dirac, as derivadas temporais de operadores

podem ser escritas como:
dGH

dt
(t) =

i

~
[H(t), GH(t)] +

(
dGS

dt
(t)

)H
=
i

~
(
[H(t), GS(t)]

)H
+

(
dGS

dt
(t)

)H
(3)

dGI

dt
(t) =

i

~
[H0, G

I(t)] +

(
dGS

dt
(t)

)I
=
i

~
(
[H0, G

S(t)]
)I

+

(
dGS

dt
(t)

)I
(4)

Definimos o vetor de estado |ψ0〉 e o operador de densidade ρ (em qualquer dos esquemas):

|ψ0〉 ≡ |ψS(t0)〉 = |ψH〉 = |ψI(t0)〉 (5)

ρ(t) ≡
∑
k

pk |ψk(t)〉 〈ψk(t)| (6)

Onde pk são probabilidades associadas a uma mistura estatı́stica de estados1. ρ é extremamente

útil para calcular valores médios de operadores, que podem ser escritos da forma 〈G(t)〉 = Tr{ρ(t)G(t)}.
No esquema de Schrödinger temos (omitindo a dependência temporal dos operadores nos passos in-

termediários):

〈GS(t)〉 = Tr{ρSGS} = Tr{UρHU †U0G
IU †0} = Tr{ρHU †1GIU1}

= Tr{ρHU †1(t, t0)G
I(t)U1(t, t0)} (7)

Lembrando que no esquema de Heisenberg os vetores de estado são independentes do tempo, de

modo que ρH = ρ0 corresponde à matriz de densidade no equilı́brio.

No equilı́brio (não-perturbado), temos U1 = 1, logo:

〈GS(t)〉eq = Tr{ρHGI(t)} (8)

Fora do equilı́brio, em primeira ordem na perturbação, temos o operador de evolução:

1Por exemplo, para um sistema em equilı́brio termodinâmico à temperatura T , temos pk ∝ e−Ek/kBT
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U1(t, t0) = 1− i

~

∫ t

t0

HI
1 (t′)dt′ (9)

De maneira que podemos escrever (preservando apenas termos de 1ª ordem):

U †1(t, t0)G
I(t)U1(t, t0) = GI(t) +

i

~

∫ t

t0

[
GI(t), BI(t′)

]
f(t′)dt′ (10)

E obtemos o valor médio (eq. 7):

〈GS(t)〉 = Tr{ρHGI(t)}+
i

~

∫ t

t0

Tr{ρH
[
GI(t), BI(t′)

]
}f(t′)dt′

= 〈GS(t)〉eq +
i

~

∫ t

t0

〈
[
GI(t), BI(t′)

]
〉
eq
f(t′)dt′ (11)

Com esse resultado, interessa-nos calcular o desvio do valor médio de um observável A qualquer

entre um estado perturbado e um estado de equilı́brio, definido por:

δ〈AS(t)〉 ≡ 〈AS(t)〉 − 〈AS(t)〉eq (12)

Pelas equações (8) e (11), podemos escrevê-lo como:

δ〈AS(t)〉 =
i

~

∫ t

t0

〈
[
AI(t), BI(t′)

]
〉
eq
f(t′)dt′ = 2i

∫ t

t0

χ′′AB(t, t′)f(t′)dt′ (13)

Onde definimos a função resposta χ′′AB:

χ′′AB(t, t′) ≡ 1

2~
〈[
AI(t), BI(t′)

]〉
eq

(14)

Que quantifica como o observável A no tempo t é influenciado pela perturbação no tempo t′.

2.1.1 Propriedades Função Resposta

A partir de agora, consideraremos apenas operadores GS independentes do tempo (GS = GI(t0)).

Como as propriedades de χ′′AB dependem apenas de operadores no esquema de interação, denotaremos

GI(t) simplesmente por G(t). Operadores independentes do tempo serão frequentemente denotados

sem sobrescritos (e.g. ρH = ρ ou BS = B), salvo algumas passagens explı́citas para maior clareza.

Para um observável AS independente do tempo, demostremos primeiramente que χ′′AB(t, t′) =

χ′′AB(t− t′), ou seja, que a funçao resposta depende apenas da diferença de tempos. Notemos que:

χ′′AB(t, t′) =
1

2~
〈[
A(t), B(t′)

]〉
eq

=
1

2~

(〈
A(t)B(t′)

〉
eq
−
〈
B(t′)A(t)

〉
eq

)
(15)

E, analisando o valor médio 〈A(t)B(t′)〉:

〈A(t)B(t′)〉 = Tr{ρA(t)B(t′)}

= Tr{ρU †0(t− t0)ASU0(t− t0)U †0(t′ − t0)BSU0(t
′ − t0)}

= Tr{ρU0(t
′ − t0)U0(t0 − t)ASU0(t− t0)U0(t0 − t′)BS}

Onde usamos a propriedade cı́clica do traço e o fato de que U0 comuta com ρ (pois H0 é hermi-

tiano), bem como que U †0(t) = U−10 (t) = U0(−t). Finalmente, usando que U0(t − t0)U0(t0 − t′) =
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U0(t− t′), temos:

〈A(t)B(t′)〉 = Tr{ρU †0(t− t′)ASU0(t− t′)BS} = Tr{ρASU0(t− t′)BSU †0(t− t′)}

= Tr{ρA(t− t′)BS} = Tr{ρASB(t− t′)} (16)

= 〈A(t− t′)BS〉 = 〈ASB(t′ − t)〉 (17)

Definindo τ ≡ t− t′, temos a identidade 〈A(τ)BS〉 = 〈ASB(−τ)〉, e podemos escrever a função

resposta como:

χ′′AB(t, t′) = χ′′AB(τ) =
1

2~

(〈
A(τ)BS

〉
eq
−
〈
BSA(τ)

〉
eq

)
(18)

=
1

2~

(〈
ASB(−τ)

〉
eq
−
〈
B(−τ)AS

〉
eq

)
(19)

Desse modo, vemos que χ′′AB(τ) = −χ′′BA(−τ).

2.1.2 Transformada de Fourier da Função Resposta

Definimos a transformada de Fourier χ̃′′AB(ω) de χ′′AB(τ) com as seguintes convenções para a

transformada e sua inversa:

• .̃χ′′AB(ω) ≡
∫ +∞

−∞
χ′′AB(τ)eiωτdτ (20) • χ′′AB(τ) =

1

2π

∫ +∞

−∞
χ̃′′AB(ω)e−iωτdω (21)

Alternativamente, podemos escrever:

.̃χ′′AB(ω) =
1

2~

(〈
Ã(ω)BS

〉
eq
−
〈
BSÃ(ω)

〉
eq

)
(22)

Onde, naturalmente, Ã(ω) denota a transformada de Fourier de A(τ). Da propriedade (17), é fácil

verificar que χ̃′′AB(−ω) = −χ̃′′BA(ω).

Para obter uma forma mais explı́cita de χ̃′′AB(ω), façamos a expansão de ρ na base de autoestados

de H0 na expressão de χ′′AB(τ) (eqs. 18 e 19) :

2~χ′′AB(τ) = Tr{ρA(τ)B − ρB(−τ)A}

=
∑
i,m

pm
[
〈i|m〉〈m|A(τ)B|i)〉 − 〈i|m〉〈m|B(−τ)A|i)〉

]
=
∑
m

pm
[
〈m|A(τ)B|m)〉 − 〈m|B(−τ)A|m)〉

]
Inserindo um conjunto completo entre A e B e escrevendo G(τ) = e

i
~H0τGe−

i
~H0τ :

=
∑
m,n

pm
[
〈m|e

i
~H0τAe−

i
~H0τ |n〉〈n|B|m)〉 − 〈m|e−

i
~H0τBe

i
~H0τ |n〉〈n|A|m)〉

]
=
∑
m,n

pm
[
e−iωnmτ 〈m|A |n〉〈n|B|m)〉 − eiωnmτ 〈m|B |n〉〈n|A|m)〉

]
De modo que temos χ′′AB(τ) escrito explicitamente em termos dos elementos de matriz:
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χ′′AB(τ) =
1

2~
∑
m,n

pm
[
e−iωnmτAmnBnm − eiωnmτBmnAnm

]
(23)

Finalmente, obtemos a forma explı́cita de χ̃′′AB(ω):

.̃χ′′AB(ω) =
1

2~
∑
m,n

pm
[
AmnBnm

∫ +∞

−∞
ei(ω−ωnm)τ −BmnAnm

∫ +∞

−∞
ei(ω+ωnm)τ

]
=
π

~
∑
m,n

pm
[
AmnBnmδ(ω − ωnm)−BmnAnmδ(ω + ωnm)

]
(24)

2.1.3 Sum Rules

A partir da transformada da função resposta (i.e. da sua distribuição espectral), definimos os

momentos ponderados pela energia:

m
′′(p)
AB ≡

1

π

∫ +∞

−∞
(~ω)p .̃χ′′AB(ω)dω (25)

=
1

~
∑
m,n

pm(~ωnm)p
[
AmnBnm − (−1)pBmnAnm)

]
(26)

Onde usamos a eq. (24) na última igualdade. Entretanto, podemos reescrever m(p)
AB como:

(−i)pm′′(p)AB =
~p

π

∫ +∞

−∞

dp

dtp
e−iω(t−t0) .̃χ′′AB(ω)dω

∣∣∣
t=t0

= 2~p
dp

dtp
χ′′AB(t− t0)

∣∣
t=t0

= 2~p
dp

dtp
χ′′AB(τ)

∣∣
τ=0

(27)

Usando a definição (18), e lembrando que derivadas temporais são dadas por (4), temos :

m
′′(p)
AB =

(i~)p

~

〈[
dp

dtp
A(τ), B

]〉
eq

∣∣∣∣∣
τ=0

=
(i~)p

~
1

(i~)p

〈[
[...[[A,H0]H0]...H0], B

]〉
eq

=
1

~

〈[
LpA,B

]〉
eq

(28)

Onde definimos a ação adjunta L por: LA = [A,H0]

Ademais, usando a equação (17), podemos distribuir as derivadas temporais entre A e B. Seja

l + k = p, fazemos:

m
′′(p)
AB =

(i~)p

~
dl

dtl

[〈
dkA(τ)

dtk
B

〉
eq

−
〈
B
dkA(τ)

dtk

〉
eq

] ∣∣∣∣∣
τ=0

=
(i~)p

~
(−1)l

[〈
dkA(τ)

dtk
dlB(−τ)

d(−t)l

〉
eq

−
〈
dlB(−τ)

d(−t)l
dkA(τ)

dtk

〉
eq

] ∣∣∣∣∣
τ=0

=
(−1)l

~

〈[
LkA,LlB

]〉
eq

(29)
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2.1.4 Funções de Correlação

De maneira similar à susceptibilidade χ′′AB(t, t′) = 1
2~〈[A(t), B(t′)]〉eq, consideremos a função de

correlação:

CAB(t, t′) ≡
〈
A(t)B(t′)

〉
eq

(30)

Note que podemos escrever:

χ′′AB(t, t′) =
1

2~
[
CAB(t, t′)− CBA(t, t′)

]
(31)

De modo que se não há correlação entre A e B, χ′′AB(t, t′) é identicamente nulo e, portanto,

δ〈A(t)〉 = 0, ou seja, a perturbação não desloca o valor médio do observável A do equilı́brio.

Por deduções completamente análogas ao caso de χ′′AB, é fácil verificar uma série de proprieda-

des de CAB(t, t′). Por exemplo, decorre imediatamente da eq.(17) que a correlação só depende da

diferença de tempos: CAB(t, t′) = CAB(t− t′) = CAB(τ). E, definindo sua transformada de Fourier:

C̃AB(ω) ≡
∫ +∞

−∞
CAB(τ)eiωτdτ (32)

é imediato verificar (eqs. 23 e 24) que as formas explı́citas de CAB(τ) e C̃AB(ω) numa base de

autoestados de H0 são dadas por:

CAB(τ) =
∑
m,n

pm 〈m|A |n〉〈n|B |m〉 e−iωnmτ (33)

C̃AB(ω) = 2π
∑
m,n

pm 〈m|A |n〉〈n|B |m〉 δ(ω − ωnm) (34)

E, assim como fizemos para a função resposta, definimos também os momentos ponderados pela

energia da função de correlação como:

m
(p)
AB ≡

1

2π

∫ +∞

−∞
(~ω)pC̃AB(ω)dω (35)

=
∑
m,n

pm(~ωnm)p 〈m|A |n〉〈n|B |m〉 (36)

Novamente, por uma dedução inteiramente análoga à da eq. (29) (essencialmente trocando comu-

tadores por produtos em todos as passagens na seção 2.1.3), obtemos a expressão:

m
(p)
AB = (−1)l

〈
(LkA)(LlB)

〉
eq

(l + k = p) (37)

Em particular, interessa-nos estudar o caso em que A = B (explicitamente, AS =BS), ou seja,

em que o observável é a própria perturbação (na verdade, proporcional à perturbação, pois esta tem

uma modulação temporal g(t). Um exemplo simples seria um operador de posição de uma partı́cula

em 1 dimensão: A = x, e uma perturbação que “chacoalha” a partı́cula do tipo H1(t) = α cos(t)x ).

Nesse caso, a expressão (36) é simplesmente:

8



m
(p)
A ≡ m

(p)
AA =

∑
m,n

pm(~ωnm)p
∣∣〈m|A|n〉∣∣2 (38)

Em particular, no caso de o estado de equilı́brio ser simplesmente o estado fundamental (isto é, no

caso de estarmos em temperatura zero) temos simplesmente ρH = |0〉〈0| e pm = δm0, de modo que:

m
(p)
A (T = 0) =

∑
n

(~ωn0)p
∣∣〈0|A|n〉∣∣2 (39)

E da expressão (37) podemos escrever:

m
(p)
A = (−1)l

〈
(LkA)(LlA)

〉
eq

=
1

2
(−1)l

[〈
(LkA)(LlA)

〉
eq

+ (−1)p
〈
(LlA)(LkA)

〉
eq

]
(40)

Que pode ser sumarizado em termos de comutadores ou anti-comutadores:

• m(p)
A =

1

2
(−1)l

〈[
LkA,LlA

]〉
eq

p ı́mpar (41)

• m(p)
A =

1

2
(−1)l

〈{
LkA,LlA

}〉
eq

p par (42)

2.1.5 Frequências de Excitação de um Sistema Genérico

Dados os resultados construı́dos ao longo dessa seção, mostremos agora como podemos utilizá-los

para extrair frequências de excitações de baixas energias de um sistema genérico.

Na base |n〉 de autoestados de H0, convencionamos as energias En ordenadas da forma E0 ≤
E1 ≤ E2 ≤ E3..., de modo que as frequências de Bohr associadas ao estado fundamental |0〉 (ωn0 =

(En − E0)/~) obedecem a ω10 ≤ ω20 ≤ ω30... . Seja B = A a parte independente do tempo da

perturbação associada a um modo coletivo de nosso interesse, esse ordenamento de frequências nos

permite escrever a desigualdade:

ω2
10 ≤ ω2

10

| 〈0|A|1〉 |2 +
∑

n6=1 | 〈0|A|n〉 |2(ωn0/ω10)
3

| 〈0|A|1〉 |2 +
∑

n6=1 | 〈0|A|n〉 |2(ωn0/ω10)
=

1

~2
m

(3)
A

m
(1)
A

(43)

Onde usamos a expressão (39) na igualdade a direita. Temos então um limite superior para esta

energia de excitação:

~ωupper =

√√√√m
(3)
A

m
(1)
A

(44)

Note que esse é um limite rigoroso no caso da excitação de mais baixa energia, mas o mesmo não

é verdade para os demais modos. Entretanto, espera-se que esse seja um bom limitante para modos

de energia suficientemente baixa.

O que é conveniente na equação (44) é que, através dos Sum Rules (equação 41), podemos es-

crever os momentos m(1)
A e m(3)

A em função de valores médios de comutadores de H0 e A no estado

fundamental:
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m
(1)
A = −1

2
〈0|
[
L0A,L1A

]
|0〉 = −1

2
〈0
∣∣[A, [H0, A]]

∣∣0〉 (45)

m
(3)
A = +1

2
〈0|
[
L1F,L2F

]
|0〉 = −1

2
〈0
∣∣[[A,H0], [H0, [H0, A]]

]∣∣0〉 (46)

Nossa abordagem consiste em calcular explicitamente esses comutadores e valores médios para

alguns operadores A especı́ficos obtendo a frequência correspondente na equação (44). A rigor, o

método fornece cotas superiores para essas energias; originalmente aplicado num contexto de gases

quânticos numa armadilha harmônica em [1, 2], ele fornece valores em excelente acordo com dados

numéricos e experimentais para os modos coletivos naqueles casos. E, de fato, se considerarmos um

acoplamento suficicientemente seletivo – isto é, um operador A que acople o estado fundamental |0〉
a um estado excitado |p〉, de modo a termos |〈0|A|p〉|2 >> |〈0|A|n 6=p〉|2 – a expressão (43) nos dá

praticamente uma igualdade:

ω2
p0 ' ω2

p0

| 〈0|A|p〉 |2 +
∑

n6=p | 〈0|A|n〉 |2(ωn0/ωp0)3

| 〈0|A|p〉 |2 +
∑

n6=p | 〈0|A|n〉 |2(ωn0/ωp0)
=

1

~2
m

(3)
A

m
(1)
A

(47)

Finalmente, apontamos que uma outra abordagem mais rigorosa e comumente utilizada consiste

em descrever a densidade do sistema como a densidade de equilı́brio adicionada de uma flutuação

(n(x, t) = neq(x)+δn(x, t)) e encontrar, via equações hidrodinâmicas, os modos normais de oscilação

para δn [10]. Entretanto, essa abordagem é consideravelmente mais complicada que a aplicação de

Sum Rules, sobretudo quando não temos mais simetria esférica no estado de equilı́brio.

2.2 Sistema Fı́sico e Caracterı́sticas de Equilı́brio

O nosso sistema fı́sico de interesse é um gás bosônico aprisionado numa armadilha tipo bolha,

cujo potencial é descrito por um oscilador harmônico radial isotrópico cujo mı́nimo está localizado

numa casca esférica de raio r0:

Utrap(r) =
1

2
Mω2

0(r − r0)2 (48)

e cujos átomos interagem entre si por interações de contato (espalhamento de onda s) e dipolo-dipolo,

nas quais todos os átomos têm seu momento de dipolo ~µ alinhado paralelamente a uma certa direção

(que convencionamos ao longo do eixo z). Podemos escrever esse potencial na forma:

Vint(x) = Vs(x) + Vdd(x) = g

{
δ(x) +

3εdd
4π|x|3

(
1− 3

z2

|x|2
)}

(49)

Onde g = 4π~2
M
as está relacionado ao comprimento do espalhamento de onda s e εdd = µ2/3g é

proporcional ao momento de dipolo ao quadrado de cada átomo e quantifica a magnitude relativa das

interações dipolares em relação às de contato. O sistema é ilustrado pictoricamente na Figura 1:

10



Figura 1: Ilustração qualitativa do sistema, com átomos
dipolares dispostos ao longo de uma casca esférica, com

momento de dipolo alinhado ao longo do eixo z.

Ressaltamos que um potencial de confina-

mento tipo bolha é produzido através de po-

tenciais adiabáticos vestidos de radiofrequência

[5] (sobre os quais não entraremos em maiores

detalhes), para o qual a aproximação harmônica

(eq. 48) é válida no limite em que temos uma

casca esférica muito fina, ou seja, num regime

de forte confinamento no qual a espessura ra-

dial tı́pica do condensado (r1) é muito menor

que r0 (definindo o parâmetro adimensional c ≡
r0/r1, escrevemos essa condição como c >> 1).

Levando em conta os potenciais de aprisionamento (48) e de interação (49), temos o hamiltoniano:

H0 = Hkin +Htrap +Hint =
∑
i

{
pi

2

2M
+

1

2
Mω2

0(ri−r0)2 +
∑
j<i

Vint(xi−xj)

}
(50)

onde ri = |xi|, e a soma se dá sobre todas as partı́culas do sistema.

Dado o hamiltoniano do sistema nesse regime, a primeira tarefa de interesse é obter seu estado

fundamental: além de ter grande interesse intrı́nseco, por determinar as propriedades de equilı́brio do

sistema numa fase condensada, ele é necessário para calcularmos explicitamente as expressões dadas

pelos Sum Rules (eqs. 45, 46). Entretanto, seu cálculo não faz parte do escopo deste trabalho, tendo

sido realizado por um aluno de mestrado do grupo. Nos limitamos a descrevê-lo em linhas gerais e

discutir os principais aspectos dos resultados.

A abordagem consiste em assumir um Ansatz da forma:

ψ(x) = A e(r−r0)2/2r21 ×
∑
l,m

al,mY
m
l (θ, φ) (51)

onde A é uma constante de normalização, e separamos a dependência radial e a angular, de maneira

que temos um sistema radialmente congelado no estado fundamental de um oscilador harmônico

e uma função angular genérica que aparece expandida nos harmônicos esféricos Y m
l , para a qual

queremos obter os coeficientes al,m.

Devido à anisotropia introduzida pela interação dipolo-dipolo (que diferencia o eixo z dos de-

mais), não teremos um estado fundamental esfericamente simétrico. Entretanto, ainda temos simetria

azimutal e por paridade, de modo se espera que contribuam apenas os harmônicos esféricos com

m = 0 e l par. Esses coeficientes foram calculados através de uma minimização numérica da energia

do sistema, onde a expansão foi truncada num certo valor lmax.
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Figura 2: Densidades de equilı́brio para diversos
valores de εdd. Nota-se picos de densidade cada vez
mais acentuados em θ = π/2 à medida em que εdd
aumenta. Aqui neq(θ) é proporcional a |ψ(r0, θ)|2.

De fato, o estado fundamental obtido apre-

senta as simetrias esperadas. Para εdd = 0

temos distribuição uniforme de densidade, e,

conforme aumentamos εdd, aparece uma de-

pendência em θ: o condensado passa a se ra-

refazer nos pólos (θ = 0 e θ = π), e a se con-

centrar ao redor do plano equatorial (θ=π/2),

conforme ilustra a Figura 2. Esse comporta-

mento está de acordo com o que se pode es-

perar intuitivamente, pois a interação dipolar é

puramente repulsiva nos pólos, onde os átomos

estão dispostos lado a lado, mas tem uma com-

ponente atrativa no equador, onde parte dos átomos estão “acima” ou “abaixo” uns dos outros.

3 Aplicações: Modos Coletivos
Com a abordagem dos Sum Rules, calculamos a seguir as frequências de 3 modos coletivos de

interesse. A aplicação é ilustrada em detalhes para o modo de monopolo, que é particularmente sim-

ples, apontando algumas caracterı́sticas importantes do método e calculando algumas passagens não

triviais. Nos demais modos, nos limitamos a exibir e discutir os principais resultados. Em todos

os casos, calculamos as expressões numa armadilha cheia (com r0 = 0, à qual nos referimos sim-

plesmente como armadilha harmônica), recuperando expressões conhecidas [2], e na bolha (r0 6= 0).

Nesta última, calculamos valores médios numericamente a fim de comparar com resultados obtidos

via equações hidrodinâmicas [3].

3.1 Breathing Mode: Operador de Monopolo
Esse modo corresponde a contrações e expansões radiais do condensado, que ocorrem em fase

em todas as direções do espaço. Excita-se essa oscilação com uma perturbação H1(t) = g(t)A, que

modula o confinamento radial temporalmente, por exemplo:

H1(t) = α cos(Ωt)
∑
i

r2i ⇒ Amon =
∑
i

r2i (52)

Não havendo ambiguidade dentro de cada subseção, nos referiremos a operadores de excitação

especı́ficos simplesmente como A, e a seus momentos m(p)
A como mp.

Note que A só envolve funções das posições xi, de modo que seu comutador com H0 só envolve o

termo cinético: [H0, A]= 1
2M

∑
i[pi

2, A]. Desse modo, caracterı́sticas particulares da armadilha e das
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interações só aparecem em comutadores de ordem mais alta (como [H0, [H0, A]]). Isso ocorre para

todos os operadores de excitação aqui considerados, simplificando a tarefa de considerar diferentes

armadilhas e termos de interação.

3.1.1 Armadilha Harmônica

Tratemos primeiramente do caso mais simples e bem conhecido de uma armadilha harmônica

isotrópica centrada na origem, isto é, tomando r0 = 0 no nosso potencial de aprisionamento. Temos

os comutadores:
• [H0, A] =

1

2M

∑
i

[pi, r
2
i ] = −2i~

M

∑
i

{
xi · pi +

~
2i

}
(53)

• [A, [H0, A]] =
4~2

M

∑
i

r2i (54)

e o momento m1: m1 ≡
1

2
〈[A, [H0, A]]〉 =

2~2

M

∑
i

〈r2i 〉 =
2~2

M
N〈r2〉 =

4~2

M2ω2
0

〈U〉 (55)

Onde N denota o número total de partı́culas do condensado. Na última igualdade, reescrevemos

o valor médio 〈r2〉 em termos do valor médio da energia potencial de aprisionamento 〈U〉. Já para o

momento m3, precisamos dos comutadores:

• [H0, [H0, A]] =
2~2

M

{
− 1

M

∑
i

pi
2 +Mω2

0

∑
i

r2i +
∑
i<j

∑
k

(
xk ·∇xk

Vint(xi − xj)
)}

(56)

• [[A,H0], [H0, [H0, A]]] =
4~3

M2
i

{
1

M

∑
i

[pi
2,xi · pi] +Mω2

0

∑
i

xi · [pi, r
2
i ]

+
∑
i<j

∑
k,l

(
xl · [pl ,xk ·∇xk

Vint(xi − xj)]
)}

=
4~4

M2

{
2

M

∑
i

pi
2+ 2Mω2

0

∑
i

r2i +
∑
i<j

∑
k,l

{
xl ·∇xl

(
xk ·∇xk

Vint(xi − xj)
)}}

=
4~4

M2

{
2

M

∑
i

pi
2+ 2Mω2

0

∑
i

r2i +
∑
i<j

{
(xi − xj)·∇

(
(xi − xj)·∇Vint(xi − xj)

)}}
(57)

Onde, na última linha, subentende-se que a diferenciação representada pelo operador ∇ (sem

ı́ndice) se dá em relação ao argumento da função xi − xj.

Note que os diferentes termos não-cinéticos do hamiltoniano não se misturam; as contribuições

provenientes do termo de aprisionamento e de cada termo de interação simplesmente se somam. Isso

continua valendo ao tomarmos o valor médio (que é uma operação linear) e se aplica a todos os

operadores de excitação A que aqui consideraremos, pelo simples fato de A depender apenas de xi.

Calculando então o momento m3, temos:

m3 ≡
1

2
〈[[A,H0], [H0, [H0, A]]]〉 =

2~4

M2

(
4〈T 〉+ 4〈U〉+ I

)
(58)
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onde: I =
∑
i<j

∫
d3xi n(xi)

∫
d3xj n(xj)

[
(xi − xj)·∇

(
(xi − xj)·∇V (xi − xj)

)]
=
∑
i<j

∫
d3R

∫
d3X n(R+X/2)n(R−X/2)

[
X·∇

(
X·∇Vint(X)

)]
(59)

E R = 1
2
(xi + xj) e X = xi − xj são, respectivamente, a coordenada de centro de massa e a

coordenada relativa. Procedemos, então, expandindo as derivadas em (59) e fazendo integrações por

partes, nas quais se anulam termos de superfı́cie e termos com integrando proporcional a XVint(X).

Os únicos termos que contribuem são proporcionais a n(R + X/2)n(R−X/2)Vint(X), resultando:

I = 9
∑
i<j

∫
d3R

∫
d3X n(R + X/2)n(R−X/2)Vint(X) = 9〈Hint〉 (60)

Ou seja, acabamos com um termo proporcional à energia média de interação. Finalmente, temos

a frequência de excitação:

~2ω2
mon =

m3

m1

=
~2ω2

0

2

(
4〈T 〉+ 4〈U〉+ 9〈Hint〉

〈U〉

)
(61)

⇒ ωmon = ω0

√
4〈T 〉+ 4〈U〉+ 9〈Hint〉

2〈U〉
(62)

E, notando que na armadilha harmônica (r0 = 0), vale U(αx) = α2U(x), e que para o nosso

potencial de interação vale Vint(αx) = α−3Vint(x), o Teorema o Virial dá a relação:

2〈T 〉 − 2〈U〉+ 3〈Hint〉 = 0 (63)

ωmon = ω0

√
5− 〈T 〉

/
〈U〉 (64)de modo que a frequência (62) pode ser reescrita como em [2]:

3.1.2 Armadilha Tipo Bolha

Conforme discutido na seção anterior, uma mudança na armadilha não afeta os comutadores de

ordem mais baixa [H0, A] e [A, [H0, A]], de modo que a expressão para m1 continua sendo:

m1 =
2~2

M
N〈r2〉 (65)

Mas não vale mais a última igualdade de (55), pois na bolha 〈U〉 não é proporcional a 〈r2〉, mas

sim a 〈(r−r0)2〉. Note também que, apesar de a expressão ser a mesma, isso não significa que o valor

de m1 é o mesmo, pois agora o valor médio está sendo avaliado no estado fundamental da bolha.

Já nos comutadores de ordem mais alta só aparecem modificações no segundo termo (referente à

energia de aprisionamento). Para [H0, [H0, A]] (eq. 56) esse termo se torna:

Mω2
0

∑
i

r2i → Mω2
0

∑
i

(
r2i − r0ri

)
(66)

Isso acarreta uma mudança no termo correspondente em
[
[A,H0], [H0, [H0, A]]

]
(eq. 57):

14



2Mω2
0

∑
i

r2i → Mω2
0

∑
i

(
2r2i − r0ri

)
(67)

De modo que a única modificação em relação à armadilha harmônica é o termo subtraı́do na eq.

(67). Tomando seu valor médio, temos o momento:

m3 =
4~4

M2

[
4〈T 〉+ 2Mω2

0N〈r2〉+ 9〈Hint〉 −Mω2
0r0
∑
i

∫
d3xi n(xi)ri

]

=
4~4

M2

[
4〈T 〉+ 2Mω2

0N
(
〈r2〉 − r0

2
〈r〉
)
+ 9〈Hint〉

]
(68)

Nessa expressão, é conveniente eliminarmos o valor médio 〈r2〉 em favor de 〈U〉 e 〈r〉, de maneira

que obtemos a seguinte expressão para a frequência:

ωmon ≡
1

~

√
m3

m1

= ω0

[
4〈T 〉+ 4〈U〉+NMω2

0

(
3r0〈r〉 − 2r20

)
+9〈Hint〉

2〈U〉+NMω2
0

(
2r0〈r〉 − r20

) ]1/2
(69)

Que se reduz à expressão (62) para r0 = 0. Note que, na bolha, deixa de valer que U(αx) =

α2U(x), de modo que não podemos mais eliminar 〈Hint〉 da expressão por meio do Teorema do Virial.

Entretanto, podemos ainda simplificá-la notando que 〈r〉 = r0 no limite de casca fina r1 << r0:

ωmon = ω0

[
4〈T 〉+ 4〈U〉+ 9〈Hint〉+NMω2

0r
2
0

2〈U〉+NMω2
0r

2
0

]1/2
(70)

Dessa expressão, fica evidente que ωmon tende a se aproximar da frequência da armadilha con-

forme r0 cresce. É então de se esperar que no limite de r0 “muito grande” (NMω2r0>>〈U〉, 〈T 〉, 〈Hint〉),
teremos que ωmon ∼= ω0. A rigor, é claro, é necessário avaliar com cuidado como os valores médios

da energia mudam conforme r0 cresce para verificar essas tendências. Numericamente, obtivemos os

seguintes valores de frequência para uma casca com c ≡ r0/r1 = 20:

Figura 3: Frequências relativas de monopolo para c = 20.
Para εdd → 0, ωmon se torna muito próxima de ω0.

De fato, obtemos na bolha frequências de

monopolo muito próximas de ω0 (com des-

vios inferiores a 10−2), que é o mesmo resul-

tado obtido via equações hidrodinâmicas no

regime não dipolar (εdd=0) [3]. Como temos

uma casca de espessura finita, e esperamos que

ωmon> ω0 na armadilha harmônica (eq. 64),

de fato esperarı́amos obter ωmon/ω0 ligeira-

mente maior que 1 nesse limite. Já ao aumen-

tar εdd, observa-se uma ligeira diminuição nas

frequências, apresentando uma discreta assi-

natura da interação dipolar.
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3.2 Modo de Quadrupolo (|m| = 2)

Esse modo corresponde a uma excitação em que a componente z permanece estática, enquanto

as componentes x e y expandem e contraem fora de fase (ele é identificado como |m| = 2 pois

essa excitação escrita em termos de harmônicos esféricos Y m
l é proporcional a Y 2

2 + Y −22 [2]). Essa

excitação é realizada provocando variações δω (<< ω0) na frequência de aprisionamento em x e y

em oposição de fase, de maneira que o operador A associado é da forma:

A|m|=2 =
∑
i

[(
(ω0 + δω)2 − ω2

0

)]
x2i +

[(
(ω0 − δω)2 − ω2

0

)]
y2i ≈ 2ω0 δω

∑
i

(x2i − y2i ) (71)

Onde ignoramos constantes escalares multiplicativas (que se cancelam na razão m3/m1). Temos:

A|m|=2 =
∑
i

(x2i − y2i ) (72)

3.2.1 Armadilha Harmônica

Em relação ao momento m1, temos:

[A, [H0, A]] =
4~2

M

∑
i

(
x2i + y2i

)
⇒ m1 =

2~2

M

〈∑
i

(x2i + y2i )
〉

=
8~2

M2ω2
0

〈U⊥〉 (73)

Onde 〈U⊥〉 denota o valor médio da energia potencial em uma direção no plano xy:

〈U⊥〉 ≡ 〈Uy〉 = 〈Ux〉 =
1

2
Mω2

0

∑
i

〈x2i 〉 (74)

E, em relação ao momento m3, temos o comutador:[
[A,H0], [H0, [H0, A]]

]
=

4~4

M2

{
2

M

∑
i

(p2xi + p2yi) + 2Mω2
0

∑
i

(x2i + y2i )

+
∑
i<j

(
Xij

∂

∂Xij

[
Xij

∂Vint
∂Xij

(Xij)
]
+Yij

∂

∂Yij

[
Yij

∂Vint
∂Yij

(Xij)
]
−2XijYij

∂2Vint
∂Xij∂Yij

(Xij)

)}
(75)

Ao tomar o valor médio em (75), há um cancelamento entre a contribuição dos termos puros e dos

termos cruzados de interação (por simetria azimutal), simplificando bastante a expressão para m3:

m3 =
16~4

M2

(
〈T⊥〉+ 〈U⊥〉

)
(76)

Onde definimos 〈T⊥〉 de maneira análoga a 〈U⊥〉:

〈T⊥〉 ≡ 〈Ty〉 = 〈Tx〉 =
1

2M

∑
i

〈p2xi〉 (77)

ω|m|=2 = ω0

√
2
(
1 + 〈T⊥〉/〈U⊥〉

)
(78)Finalmente, obtemos a frequência (como em [2]):

3.2.2 Armadilha Tipo Bolha

Como nos demais casos, os comutadores de ordem mais baixa e a expressão param1 permanecem

inalterados (não valendo mais a última igualdade em (73), pois 〈U〉 não é proporcional a 〈r2〉 nessa

armadilha). Pela simetria azimutal do estado fundamental, podemos reescrever m1 como:
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m1 =
4~2

M
N〈x2〉 (79)

Também como nos demais casos, altera-se somente o segundo termo (referente à energia potencial

da armadilha) dos comutadores de ordem mais alta. Temos a alteração na eq. (75):

2Mω2
0

∑
i

(x2i + y2i ) → 2Mω2
0

∑
i

[
r2i⊥

(
1− r0

ri

)
+r0

x2i − y2i
2r3i

]
(80)

Onde r2i⊥ = x2i + y2i . Pela simetria azimutal do sistema, o valor médio do último termo se anula,

de maneira que ele não contribui para m3. Ficamos então com:

m3 =
4~4

M2

{
4〈T⊥〉+ 2NMω2

0

〈
r2⊥
(
1− r0

r

)〉}
(81)

Ademais, se o pico de densidade na direção radial for suficientemente estreito, de modo que quase

toda a contribuição na integral vier da região r≈ r0, o segundo termo se torna praticamente nulo, e

ficamos com:

m3 =
16~4

M2
〈T⊥〉 ⇒ ω|m|=2 = 2

√
〈Tx〉

NM〈x2〉
(82)

Calculamos alguns valores dessa frequência numa casca esférica com c= 20, conforme exposto

na Figura 4:

Figura 4: Frequências de oscilação do modo de
quadrupolo |m| = 2 numa casca com c = 20.

Os valores obtidos para as frequências de qua-

drupolo são consideravelmente menores do que ω0,

com quase 2 ordens de grandeza de separação. Em

especial, no limite não dipolar, isso é precisamente

o que é descrito na literatura no limite de casca fina

[3]: observando a expressão explı́cita, obtida via

equações hidrodinâmicas em [3], esse modo tem

uma frequência relativa da ordem de c−1: ωl =

c−1ω0

√
l(l + 1)/3, e identificando o modo de qua-

drupolo com l= 2, temos ω/ω0 =
√

2/20≈0,0707 ,

que é precisamente o resultado que obtemos para esse quadrupolo para εdd → 0. Nota-se ainda que

essas frequências variam muito pouco com εdd, com variações da ordem de ∼10−5ω0≈10−4ω.

3.3 Oscilações de Centro de Massa: Operador de Dipolo

Os modos de dipolo correspondem a oscilações do centro de massa do sistema em torno da

configuração de equilı́brio. Consideramos então 3 perturbações, proporcionais a deslocamentos ao

longo dos 3 eixos coordenados:

Ax =
∑
i

xi Ay =
∑
i

yi Az =
∑
i

zi (83)
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3.3.1 Armadilha Harmônica

Com a escolha de operadores feita acima, é simples demonstrar (ver seção 3.3.3) que termos de

interação não modificam as expressões para as frequências, conforme seria de se esperar para uma

oscilação de centro de massa, o que simplifica enormemente as contas. Escolhendo, por exemplo, a

direção x para efetuá-las, obtemos os comutadores:

•[H0, Ax] =
1

2M

∑
i

[p2xi , xi] = − i~
M

∑
i

pxi (84)

•[Ax, [H0, Ax]] =
i~
M

∑
i

[pxi , xi] =
~2

M
N (85)

•[H0, [H0, Ax]] = ~2ω2
0

∑
i

xi (86)

•[[Ax, H0], [H0, [H0, Ax]]] =
~4ω2

M
N (87)

Que nos dão os momentos:

m1 =
N~2

2M
(88)

m3 =
N~4ω2

0

2M
(89)

E a frequência de excitação:

~2ω2
x =

m3

m1

⇒ ωx = ω0 (90)

E é fácil ver que os resultados são idênticos para oscilações nas direções y e z. Vemos que para

a armadilha harmônica, a frequência de oscilações do centro de massa é precisamente a frequência

da armadilha ω0, independentemente das interações no condensado, em perfeito acordo não só com

os resultados conhecidos para esse método [1, 2], mas também com o que é conhecido da literatura

acerca desses modos.

3.3.2 Armadilha Tipo Bolha

Os comutadores [H0, Ax] e [Ax, [H0, Ax]] são os mesmos da armadilha cheia, bem como o mo-

mento m1. Os demais comutadores passam a ser:

•[H0, [H0, Ax]] =
i~ω2

0

2

∑
i

[
pxi , (ri − r0)2

]
= ~2ω2

0

(
1− r0

ri

)
xi (91)

•
[
[Ax, H0], [H0, [H0, Ax]]

]
=

i~3ω2
0

M

∑
i

(
[pxi , xi]− r0[pxi , xiri ]

)
=

~4ω2
0

M
(N − Jx) (92)

Onde definimos: Jx ≡ r0
∑
i

r2i − x2i
r3i

= r0
∑
i

y2i + z2i
r3i

(93)

E vemos que esse comutador resulta num termo idêntico ao caso da armadilha harmônica sub-

traı́do de um termo estritamente positivo. Temos então o momento m3 e a frequência de excitação:

m3 =
N~4ω2

0

2M

(
1− 1

N
〈Jx〉

)
⇒ ωx =

1

~

√
m3

m1

= ω0

[
1− 1

N
〈Jx〉

]1/2
(94)

O resultado é análogo para para oscilações em y e z, bastando substituir o operador Jx por Jy ou

Jz, definidos por:
Jy ≡ r0

∑
i

r2i − y2i
r3i

Jz ≡ r0
∑
i

r2i − z2i
r3i

(95)
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Note que em todos os casos a frequência de oscilação é estritamente menor que a frequência da

armadilha (ωx, ωy, ωz <ω0), em contraste com os resultados extensivamente conhecidos em armadi-

lhas harmônicas usuais, nas quais oscilações de centro de massa ocorrem sempre na frequência ω0,

acusando uma assinatura muito caracterı́stica da armadilha tipo bolha.

Além disso, note que nessa armadilha, apesar de as interações não modificarem as expressões

das frequências, elas modificam o seu valor, pois elas alteram qual é o estado fundamental no qual

tomamos a média dos operadores. Quando não há interação dipolo-dipolo (εdd = 0), o estado funda-

mental é esfericamente simétrico e as frequências de oscilação são isotrópicas. Entretando, quando

essa interação está presente, temos somente simetria azimutal, de modo que ωx = ωy 6= ωz. Nossos

resultados numéricos estão dispostos na Figura 5:

Figura 5: Frequências relativas de dipolo para
c = 20, para oscilações nas direções x e z. Para
εdd = 0 as frequências coincidem em ω0/

√
3. À

medida que εdd aumenta, ωx cresce e ωy diminui.

De fato, as frequências ωx e ωz convergem para

εdd → 0, num valor nas vizinhanças de ω0/
√

3:

esse valor de fato é esperado nesse limite, pois para

uma densidade homogênea 〈x2〉 = 〈z2〉 = 1
3
〈r2〉,

de modo que é fácil verificar que, no limite de

casca fina, 〈Jx〉 = 〈Jz〉 = 2
3
N . Entretanto, os re-

sultados conhecidos da literatura [3] apontam que

a frequência desses modos vai a zero no limite de

casca fina. Em princı́pio isso não contradiz o re-

sultado que obtivemos, que se trata de um limite

superior para a frequência, mas é curioso que dei-

xamos de ter uma igualdade aproximada.

Já quando aumentamos a interação dipolar, o comportamento observado é que a frequência em

z diminui enquanto que a em x aumenta. Isso já era de se esperar, dado a forma de Jx e Jz e o

comportamento do estado fundamental à medida que εdd aumenta: a densidade diminui nos pólos e

se acumula ao redor do equador, de modo que 〈z2〉 diminui e 〈x2〉 aumenta. Num caso limite em que

a densidade colapsa completamente no anel equatorial, terı́amos 〈z2〉 = 0 e 〈x2〉 = 〈y2〉 = 1
2
〈r2〉, de

modo que ωz se anula e ωx, ωy tendem a ω0/
√

2.

3.3.3 Termos de Interação

Demonstremos agora que adicionar um termo genérico de interação no Hamiltoniano Hint =∑
i<j V (xi − xj) não altera as expressões das frequências.

É fácil ver que Hint não altera as expressões para [H0, Ax] e [Ax, [H0, Ax]] (e consequentemente

para m1), pois Hint e A comutam. Entretanto, em pricı́pio, a interação poderia contribuir para comu-
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tador [H0, [H0, Ax]] (eqs. 86 e 91), com um termo da forma (eq. 85):

− i~
M

[∑
i<j

V (xi − xj),
∑
k

pxk

]
=
h2

M

∑
i<j;k

∂V

∂xk

(
(xi − xj)

)
=
h2

M

∑
i<j

[∑
k

(δik − δjk)
∂

∂X
V (X)

]
= 0

Onde o somatório em k trivialmente se anula, pois há um termo com k= i e outro com k=j.

4 Conclusões

A abordagem dos Sum Rules, já bem testada na literatura para geometrias usuais, se mostrou

bastante promissora para calcular frequências de excitação de um condensado numa armadilha tipo

bolha: no limite não dipolar obtemos, através de cálculos analı́ticos e com relativa facilidade, resul-

tados para as frequências de excitação em excelente acordo numérico com a literatura nos modos de

monopolo e quadrupolo – para os modos de dipolo, são obtidos valores fisicamente razoáveis, mas

em tensão com os resultados obtidos por equações hidrodinâmicas, requerindo ainda ulterior análise e

discussões; além disso, foi possı́vel prontamente estender esses resultados para considerar interações

dipolares, destacando suas assinaturas caracterı́sticas nas frequências desses modos.

Destacamos que o presente trabalho faz parte de um artigo submetido ao Scientific Reports sobre

condensados numa armadilha tipo bolha [11].
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